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Abs t r ac t

A method  of data acquisition and data analysis is dcscribccl in which the pcrforh~anm  of hflichclson-type

intcrfcromcters  with unequal arms can be made ncar]y  t,hc same as interferometers with equal arms. ‘~hc

mctllod  requires a separate readout of the relative phase in cacb arm, made by interfering the returl]ing

beam in each am with a fraction of the outgoing beam. Instead of throwing away the information from a

single arm by subtracting it from that from the otllcr  arm,  the data in onc arm is first used to estimate the

laser phase  noise and then correct for its eflect  in the normal diffcrenced  intcrfcromctcx  data.

PACS numbers: 04.80.N, 95.55.Y, and 07.60.1,



\

I

.

cxl)crimcntl  for cxmnplc,  it is dcsitcd  to very accurately measure tllc relative straiu bctwccu  free-flyiug

sl)acccraft  wl)ich,  bccausc  of the solar systcm  orbits 0)1 which they fly, cauuot  maiutaiu  equal distauccs

bctwccn  thcm.  It is the purpose of this paper to describe a mcthocl of data processing that will achicvc

almost  all the noise cauccllation  of an equal-arm iutcrfcrometcr,  cvcu in a case where the arms arc rather

badly unequal.

II Unequal-Arm Interferometers

‘J’wo space missions have rcccntly  been proposed [1 ,2] that consist of free-flyiug spacecraft which track each

other with lasers. Iu om of these, LISA, tlw spacecraft fly on orbits  that arc uou-circular  to a fcw tcuths of

a pcrccmt. Iu the otlmr,  SA~~ITTARIUS, the deviations iu the armlcagths  cau bc almost 2Y0. Iu order to be

sure of clctcctiug  gravitational waves, these missions require a straiu scusitivity of about h * 10- 2]. If OIIC

were to usc normal iutcrfcromctcr  tcchuiqucs,  the SAGI’1’’1’AR1US  2’%0 amlcngth  diflcrcucc  would require

the laser noise to bc lCSS thau h(l/2A/) x 3 x 10-20, aud the LISA arm difference would require laser noise

ICSS than 3 x 10-19. Neither of these laser phase stabilities arc currently obtaiuaMc.. .

However, the equal-arm iutcrfcromcter  scheme dcscribcd  iu the last  scctiou  is only a l)arLicular case of a

more general set of algorithms that cau bc used to aualyzc  the data iu the two arms. 1 t is the case wllcrc

a real-time subtraction is performed by applying the sigual from ouc arm at onc time to cancel the noise iu

the other arm at the same time, the times bciug the same bccausc  the times of flight in the two arms arc

identical. If the times of flight arc different, then the information from the two arms may still bc used to

correct for the fluctuations of the laser, but the corrcctiom would bc applied at times consistent with the

diffcrcnccs  iu armlcngths.

‘1’o  bc specific, let us dcscribc  the following clata aualysis  procedure for a two-arm, uucqual-arm  iute~fcr-

omctcr  formed by four spacecraft, as shown iu Figure 1. Each  spacecraft is assumed to sencl a laser signal

aud to rcccivc a signal from its counterpart. There is also assumed to k a tw~way reference sigual  sent aud

rcccivcd  bctwccn  the two spacecraft that arc C1OSC to each other. ‘1’hc two ccutral

the central beamsplitter

the cnd mirrors.

I,ct US then dcfiuc:

of a laboratory Michelson intcrfcrometcr.  l’hc  siuglc cnd

spacecraft correspond to

spacecraft corrcspoud  to

● J)i (t) as thC phase noise of the laser in the it’~ spacecraft, S0 that tllc phase of the z~h laser is l’~ ==
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I Michelson Interferometers

‘J’he  Nflichelson interfcromctcr  was devised as a method to nmkc very prccisc  relative clistancc  mcasurcmnts.

In the common laboratory version of the instrument, a laser signal is divided by a beam splitter, the two

divided beams arc sent out along different paths, the beams arc rcficctcd  back to the beam splitter, and the

beams then interfere to produce a light fringe. ‘1’hc  intcrfcromcter  will detect than.gcs in the difTcrcncc in

the lengths of the two arms by monitoring the intensity of the fringe.

“1’hc advantage of the intcrfcromctcr  over a systcm  where a single arm is USCCI and where the returning

light int,crfercs with a fraction of the outgoing light to form the fringes lies in the relative immunity of tllc

intcrfcromctcr  to fluctuations in the phase of tllc l~~cr. In a single arm, jitter in the laser phase over the

round-trip light time would cause the interference pattern to fluctuate, mimicking a change in the path

lcngtll.  Ilowcver,  in an interferometer, the phase fluctuations arc carried out equally along the two al m

and, wllcn the return beams finally combine, the fluctuations will bc the same in both signals and will camel.

‘1’his schcmc  supposes, of course, that the lcngtlls  of the two arms arc essentially equal. Indcccl, if the

two arms of length 11 and 12 arc unequal by an amount Al = 1] - 12, then the plmsc noise in tllc intcrfcrcncc

fringe will bc given by (WC adopt units in which the speed of light c = 1)

A@(t)  = p(t -- 211) -- p(t - 212) x fi(t - 2L])(2A1)

where p(t) is the phase noise in the laser. The relative strain noise in the intcrfcromctcr  is thcrcforc

where the brackets denote time average, and v is the non~inal laser frequency. Thus, the residual phase noise

in the interferometer is a fraction 2A1/1  of the laser frequency noise.

In the laboratory, the armlcngth  difference Al may bc initialized to near zero by minimizing this noise, ancl

then this length may bc stabilized by adjusting the path so as to maintain a constant intensity of the fringe,

the path adjustment required giving the measure of the external influcncc  on the arlnlcngths.  However,

there arc cases where the paths cannot bc maintained at cqua] lengths. 1 n a spaceborne gravitational wave
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● 1~ (t) as the one-way light-time for the signal along tile ith interferometer arm, including  slow drift

velocities from the orbits and faster changes produced by gravitational waves.

‘1’hc  signal rcccivcd by each spacecraft is allowed to interfere wit]] a fraction of the local laser power being

sent out. l’hc phase  of the beat signal read in the it” spacecraft photodiode is then .givcn by

where i takes on the values {1,2} and k takes on the appropriate value from the set {3, 4}. ‘1’hc  phase

refcrcncc  signal readout is similar:

wlwrc d is the distance between the two C1OSC spacecraft and where {i, j} arc chosen from {1, 2}.

If all signals s~(t) and Ua (t) arc read out and telemetered from the spacecraft to the ground, then co)nbi-

nations of these signals may be used to synthesize an intcrfcromctcr  in data analysis. I’hc diffcrcnced  plmc

reference signal is

c72(t) – CJl(t) = [PI (i) i Pl(t – d)] - ~2(t) +- p2(t - d)].

In the frequency domain, wc have

Oz(.f) - C7] (“f) = [p] (f) - pz(j)] (1 i Wq , (3)

so that, knowing the distance d, one can apply a linear filter and rewrite the cliffcrcnccd  phase refercncc

signal as



.

((t) = p~ (t) -- pz(t). (4)

‘1’his time series will tie the lasers iu the two central spacmraft together as if they were beams from a single

laser. ‘1’hc  main  signal is essentially an intcgratccl  IJopl)lcr mcasurcmcnt  at the central point, formed by the

combination

.zZ(t)  = Si(t)  + Sk(t - li) =- pt(t -- 21i) - p,(t) - 47rvli(t). (5)

13y combining .zI (t) and ZZ(t) from equation (5) and using the refcrencc  signal <(t) from equation (4),

onc can write the intcrferomctcr  signal in terms of the noise in onc laser only

l’hc algorithm to bc used in the case of unequal arms consists of a procedure to synthmize  the laser phase

noise in this signal so that its efl’ect in equation (6) may bc subtracted away. To do this, wc first assume

that the signal is dominated by laser phase noise iu the bandwidth of

transform of ZI (t) would bc given in terms of the transform of p] (t) by

interest, in which case the Fourier

where the cxpremion  in parmtlmis is the transfer function for differcncing  at the rouud-trip  light-time,

analogous tocquation  (3). Ollelllay tllcrcfore  usczl(t)  togcllerate allcstixllate jl(~)of~)l  (f):

(7)

Fourier  reco]lstructioll  oftlleti]llc scriestllell givf>sesti]llates  jl(t)a1ldj2(t) ==jl(t) -<(i) of thepha.scnoisc
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of tl)c lasers. l’hcxc estimates can then be used to prcclict the cffccf-  of the Iascr noise in the intcrfcromctcr

via

ant] the resulting estimate,

of the diffcrcnccd intcrferomc%cr signal can then be subtracted from b(t)  to give a signal

A(t) =- d(t) - ;(t),

which now dots not contain the Laser phascnoisc.  ‘1’his  procedure will work as long as one rclilains  far from

thcpolcs  of equation (7), that isat frcqucncics  well away from ~,z = n/21~, wllcre?z  isaxli~ltcgcr.  Ofcoursc,

this procedure breaks down near f == O as well, and low frequency is the place where there is the most

scientific interest. However, as one goes towards low frequcncics,  the noise in unequal-arm intcrferomctcrs

cancels anyway, and the noise still tends to zero at long periods. ‘I1his will be shown cxp]icitly  in the llcxt

section.

Finally, wc point out that the procedure we have just described is the most general one, where all lasers

at the four stations are independent and all signals arc read out separately. In a laboratory setting, the cnd

spacecraft would probably be replaced by simple mirrors (equation ,(5) would still be valid for the signal

read out in each arm). Also, it may be possible to have a single laser  at the vertex  of the interferometer,

or to phase-lock the central lasers, so that there is not p] and p2 but only a siugle  phase  noise p, In this

case there would be no al mmwurcd  and < would bc zero. However, the onc thing that lnust  bc done in this

unequal-arm scheme is that the Woppler”  signals must be reacl out separately in each arm and not simply

combined in the usual interference fringe. One must not throw away the information on the behavior of the

laser by subtracting it almost all away.
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III Theoretical performance of the algorithm

.

‘J’lw limitations on the proccdurc  dcscribccl above arrive from two sources tllc random shot noise in the

readout of the laser phase at each slJacccraft  ancl tllc error in tllc k]lowlcclgc  of the actual time-of-flight of

the signals in tllc two arms. ]n this section, wc will discuss the limitations that, these errors placm  On t,lIc

tolerances for the system.

We assume  indcpcndcnt  phase noise ni (t) in the readout of the it” arm (i = 1, 2) and wc explicitly write

t,l)c armlcngth as a sum of slow drifts li (t) outside the spectral band of interest and a gravitational wave

signal within  the band. ‘his signal is added to onc arln and subtracted from the other arm, a characteristic

of gravitational waves with a simple choice of wave polarization and propagation vccto!s. Its contribution

to each arm is given by the Doppler three-pulse response function, as given by Estahrook  and Wah]quist  [s],

which in our simple assumed case simplifies to ~ [h(t) – h(t  – 21i)], We usc detection of the gravitational

wave as our measure of sensitivity, but it is reprcscntativc  of any distance change that onc wants to measure.

our  know]cdgc of the two armlengths  11, 12 is not exact,  being limited by the errors wc make in measuring

the position of the central and cnd masses of the interferometer. I,ct  611, and 612 bc such errors, and for

simplicity let us assume that their root-mean square values arc the same. WC also assume, for the sake of

simplicity, that the phase rcfcrcncc  signal <(t) in equation (4) is null, i.e. that the two phase noises pl and

pz are equal.

In the reconstruction of the laser phase noise, using the method dcscribcd  in the previous section and

taking into account the contribution of the error 611, equation (7) is replaced by

‘?1 (f )
fi~(j) =  —.——-—  —

[ (
1

~47rij 11 i  611)  _  1

Now z] ($) is equal to

[
~4?Tijl) _ ,

.z~ ( j) = p~ (j) [e 14~~fll  -  1 ]  +  nl(j) + Vh(j)--zu--  !— .

@)

where the cocfflcicnt  of h(j) comes from the Fourier transform of this particular forln of the three-pulse

c1



resl)o]lsc function. l’hercforc  our estimate of the laser pha.w noise is given by

[ 1 [~471a.fll  . ]A ( j ) 1ilu)” mu)+ ~fi- —-y—----[ ( ~ ‘“ [W#&] “~4mt.fll+ 611)-. 1
(9)

‘l’llcdifferenced  “Dopplm-”  signal, tile Fourier t,ransformof6  (t) fromcquation (6), llastllc following analyt,ic

form

&i(f) =

The reconstructed

After substituting

difference

[
~47rijll , ~47ri.f12 . 2

p~ (j) [ c 1 147rifll  ._e4~if12 +.[Ttl (j)- ?t2(f)]+ u h ( j ) - – – -——. - ——-—. ——.  —-—
2ij

(10)

colltributioll  oflascr ~~llasc lloiscto tllisl>ll~sc  diflerel~ce ca1lbcv~rittt!ll  in tcrmsoffil(j)

;(j) = 2](j)  -- .&?(j) == fi~(j)  [e 147ri~(ll+  611)  _.c4ni.f(12+6~z)  . (11)

equation (9) into equation (11) wc get the followil~g exl)ression for the estimated phaw

‘+——
[ 1 [ 1[~47rifll__l  ~4nij(ll +611)  _e4nij(12i  612)1

loll(j)
w= Pl(. f)+-m  — — - — — .

[ (~47rifll +-611)_ ] 1

Finally, ifwc subtract theestimated  pha.sed  if ferenced  uctotllcl ~serlloise (equation

phascdificrcnce  (equation (10)), we get a signal, A(j), that hasthcfollowing  terms

(12)

(12) ) from the actual

A(j) R 6(f) -- ;(j) =- P(j)+ N(f) -t H(f)

7
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WIICTC P(f), N(f), and II(j) arc cclua] to

[

(N2 ~d~i.fll  _ I ) ( )#~i.112 . all #~i.f12 – I ~drijll ~47rij12 _ 1
H(j) = 27rvh(j) - +- —T––~47rijll  _. 1 2mj 1 (14c)

]n tlm long wavelengths limit ( jll, j12 <<1 ) equations (14) simplify and the equation for A(j) becomes

[
A ( j )  = 4rijp1 (j) ~612 ~ 1261’ 1 [12 +- 612-  1261,/1~

-1 ?~l u) 11 ‘- 1— – ?tz(j)
[

bll
i 27rvh(j)12  2+- ; -- ~

1

(15)

As an example, let us assume that the relative laser frequency noise is about 5 x 10-13 Hz  - 1/2. We

further assume that tJle dominant frecluency component of the gravitational wave we are trying to observe

is 10-2 Hz, and that the gravitational wave amplitude is 10-20 Hz  - 1/2. With these  values, equation (15)

gives a requirement on the accuracy with which the armlcngths  must be determined in order for the data

analysis algorithm to be correctly applied. l’bus, from

(16)

we derive a requirement that the difference in arm]englh  must be known to better than about 100 meters and

that the individual armlength must be known absolutely to a factor l/Al worse than that (i.e., an error of

8
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fl 5 kilomcicr  for a Al/l of 2Yo).  Tini,o and Estabrook  [4] have shown a method for measuring the armlcngth

of an intcrfcromctcr  cavity, which can also be applied to our interferometer design. 2’llc recluircnncmt  on the

precision of measuring the arndcngths  that wc have deduced above can bc easily acllicvccl by computing the

autocorrclatiou function of each ldm.sc difference zi (t) (i = 1, 2). ‘J’hc  autocorrelation funct,iou of the laser

noise has three maxima, at times zero and + 21*. Since the other  noise sources have autocorrclatiou  times

smaller than 2 1i, the arndength  can bc dctcrnliucd,  witlliu  the error required, by searclliug  for tllc position

of th~ 21i peak.

IV Numerical Simulation

1 n this section we will present a computer simulation of the signal processing for unequal-arm intcrfcromcters.

We assume again that ~(t) is null. We have simulated this single phase noise p(t) of relative amplitude

- 5 x 103 racl using a gaussian  random number generator. Shot noise ?ti (t) ~ 5 x 10--4 rad,  also with

gaussian  character, has been simulated for each of the interferometer channels (i = 1, 2). It has further been

assumed that the end laser is perfectly phase-locked to its received signal, to simplify the analysis. h40rcovcr,

in order to approximate a realistic experiment, an error 61i = 4:10 m iu our knowledge of the two arm lengths

has lmcn introduced. The simulated experimental data has been assumed to bc taken cwcry  scconcl, for a

total of N == 215 == 32768 points.

‘1’o  these  noise records a simulated gravitational wave was added with amplitude h == 10-20 and the clata

were analyzed to determine if the gravitational wave could be detected in the I)rescnce of the noise. l’wo

cases were chosen. The  first corresponds to the parameters for the SAGIq’’J’AIUUS  mission, with its short

round-trip light time but with the greater difference in the arms. q’his case thus tests the ability of the

algorithm to perform with large discrepancies in armlcngths. The  round-trip light tinlc for the two arms

were taken to be q’1 == 211 == 7.2 s and 7~ =- 212 == 7.3 s, and the simulated ~IWitatiOll?Ll  wave signal lli>d a

frequency of 10-2 Hz. l’he  second case corresponds to tile heliocentric I, ISA mission. IIcrc,  the armlengths

are greater and are relatively much closer to each other. The light time for the two arlns  was T’l = 16.70 s

and Yh == 16.73 s. Ilccausc  of the longer round-trip light time,  J~art of the band  of sciclktific interest will lie

above the first pole of equation (7). ‘J’o demonstrate the ability of the algorithm to perform in this range, a

gravitational wave frequency of 10-’1 Hz was chosen.

For all cases the phase readout in each arm is calculated

9
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zi(tk) =- p(tk – 9;)  - j)(tk) + W(tk) 4 TV ~ [h(tkl -- 7]) – h(tk, )] At (k=o,...,l1)l)
k’=- o

w]lcrc h(t) =- lL cos(2~~ht)  is a JJUI’C sinusoidal gravitational wave signal of amplitude and frcclucncy  as st,atcd

above,  and At == 1 SCX. The gravitational wave signal is added to arm 1 and subtracted from arm 2. Since

7 ~ is not an integer number, the value of p at t - 1\ is not given. Wc have dctcrmincd  it by means of a linear

fit bctwccn  two successive points, i.e.

where ra = lnt(7~) and a +- /3 = 1. Since p(tk)  is not dcfilled  for tk <0 and for tk > N, wc have mininlized

tllc boundary effect problcnl  by closing the tin~c series ill a circular way.

‘raking  arm 1 as a rcfcrcncc,  its phase readout signal is Fourier analy~cd to give

where j,l = n/N. 1310m z] (j) wc get the estimate 13(j) for p(j) through equation (7), which now reads,

taking into account the error 61 and the discrete sampling,

2] (fn)j(jn) == ——
] _ ~lc2xjrin/N  _ ~c2rrj(ri +- l)?L/N

71>1 (17)

In deriving cquat~on (17) wc have made use of the fact that the error 61 dots not change ~i, but only the

parameters a and ~. l’he  poles of equation (17) make it impossible to determine the zero frequency term,

which wc have taken to l)c zero, i.e. ji(j = O) = O. The estimate of p(f) is then inverse transformed to give

an estimate $(t) of p(i).

From ~(t), the contributions i?a (t) of the laser phase uoisc to .zi (t ) were formed via

10
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‘J’lle resulting estimate C$(tk) = 21 (tk) – 22(t~) was tllcn  subtracted fronl tlm true 6(t~) =: z] (tk) -- ZZ(tk),

to give a signal A(t~)  = 6(t~) -- ;(i!~), whose power s})cctrun~  is given by equation (15). Apart fron~ the

remaining depcndcmcc on p(f) duc to the nonzcro 61, A(t) contains only shot noise and gravitational wave

signal. Its power spectrum is then analy~cd to scc if tllc pure sinusoidal h(t) can bc found against the

background of the other noise.

‘J’hc sequcncc  of results of this data analysis is shown in Figure  2, Figures 2(a) and 2(b) rcprcscnt  a small

portion of the time series p(t)  and the low frequency region (~ s 0.1 Ilz)  of its power spectrum. Figure  2(c)

shows the same region of the power spectrum of A(t).  Finally, figures 2(d) and 2(c) show the final output

of the data analysis, A(t), i,ogcthcr  with its power spectrum around the region ~ w 0.01 Hz. Figure 2(f)

displays the equivalent of 2(e) for the long baseline case witl~ gravitational wave at 0.1 Ilz.  ‘J’hc  counterparts

for figures (a)- (d) for this case are indistinguishable from the shorter baseline case. In both cases, we notice

that the signal in a bandwidth of 1 /lV Hz may bc clearly seen above the shot noise background, with the

cxpcctcd  signal-to-noise ratio of ~.
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Appendix

In this Appendix we provide an alternative way of using the information from the two phase diffcrcnccs

z] (t), Z2 (t) in order to remove the laser phrwe  noise from an intcrferomctcr  of unequal arms. ‘l’his mctllod  is

more direct, and, as wc shall show below, its effcctivcncss  is equal to the method we have described in the

11



IXKly  of this papc!r.

I,ct  us consider the two phase  diffcrcnccs  ZI (j), z2(j) in the Fourier domain

[

U/l(j)
z] (j) =- p(f) + -

1
~z~-- [(w” - 1]+ ?t, (j)

[

U } L ( j ) 1q(f) = p(f) - -jt7- [Nfl’ -- 1] + ?tz(f)
If wc clividc Zj(j)  by the transfer function c 4~~.f(~j + d~, ) -. 1 and tllcll  take I,IIC  differel~c.c, bctw~~n the resulting

two quantities wc obtain the following expression

where P, ~, and X arc

n~ (f )
N(f) == — — – –  -

712(.f)
~47rif(l,  + 611) _ 1 ~47rif([z+6fz) _  i

(A.])

(A.2)

(A,3)

If wc expand equations (A.1)-(A.3)  in the long wavelengths limit ( j~li << jll, f 11 << 1) wc dcducc  the

fo]lowing  expression for 0(f)

(A.4)
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Wc note  that equation (A .4) can km obtainecl  from the corresponding expression deciucccl in Section III if we

divide equation (15)  by 4nz jlz, and nc.gk!ct terms of order  O(h  61) and 0(71 61).
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Figure Captions

Figure 1.

Gcojlletry  ofasl~acccraft two-arl~l il~terfcrolllctcr.  Spacecraft 1 and3track each other, and spacecraft 2 and

4trackeachothcr. Spacecraft 1 alld2exclla11gc  al~ll&se rcferellcc  trackillgsigllal.

Figure 2 0

Scqucncc  of results of the data analysis.

(a). Small  portion of the time series p(t).

(b). Low frequency region (~ ~ 0.1 Hz) of the power spectrum of p(t).

(c). Low frequency region (.f ,S 0.1 Hz) of the power spectrum of ti(t).

(d). Final output of thedata analysis, A(t).

(e) .  l'owcrsl>cctrul~~ of A(t) around  thcregioll j~O.OllIz.

( f ) .  Salnc~Figure  (e) forthelol~g b~elille cmc,  with  agravitatio~lal wave at O.l IIz.
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c) Power Spectrum of d(t)

1 1 I 1 1 1 1

I I 1 1 — . 1 I

o 0.02 0.04 0.06 0.08
1

0.1

frequency (Hz)



d) Final Output
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e) Power Spectrum of A(t)
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f) Power Spectrum of A(t)
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